
Structural and computational depth of diffusion-limited aggregation

D. Tillberg and J. Machta*
Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

(Received 30 September 2003; published 28 May 2004)

Diffusion-limited aggregation(DLA ) is studied from the perspective of computational complexity. A parallel
algorithm is exhibited that requires a number of steps that scales as the depth of the tree defined by the cluster.
The existence of this algorithm suggests a connection between a fundamental computational and structural
property of DLA.

DOI: 10.1103/PhysRevE.69.051403 PACS number(s): 61.43.Hv, 82.40.Ck, 05.45.Df, 89.75.Kd

Diffusion-limited aggregation(DLA ), introduced some 20
years ago by Witten and Sander[1], is a model of pattern
formation and an example of self-organized criticality. The
dynamical rules for DLA are simple but the patterns pro-
duced are complex and have thus far defied full theoretical
understanding; though there has been recent progress for
two-dimensional DLA [2,3]. DLA models a number of
physical systems including electrodeposition, fluid flow in
porous media, and the growth of bacterial colonies[4].

The stochastic growth rules for DLA can be couched in
terms of random-walk dynamics. In the present work we
consider two-dimensional diffusion-limited aggregates com-
posed of circular particles of unit diameter. The initial con-
dition is a single seed particle at the origin,r 0=0. The
growth of the aggregate occurs one particle at a time and
proceeds by starting the first particle at a random position on
the “birth circle,” r1s0d=rb.1. This particle does a random
walk, w1std, until it either drifts out to the “death circle,”
r1. rd@ rb, or comes in contact with the particle at the ori-
gin, r1=1. If it contacts the particle at the origin, it sticks and
the aggregate grows. If it reaches the death circle, it is reborn
at a random point on the birth circle and the process is re-
peated until the particle sticks. Aftern steps of this construc-
tion, the aggregate consists ofn connected particles con-
tained in a circle of radiusRn. On thenth step, a particle is
launched on the birth circle,rb.Rn+1, and follows a ran-
dom walkwnstd until it sticks on one of the existing particles
in the aggregate at sticking positionr n such that there is a
k,n and ur n−r ku=1.

DLA is believed to form fractal clusters such thatRN
,N1/df, where RN is the average radius of a cluster ofN
particles anddf is the fractal dimension, estimated by nu-
merical simulation to be 1.715±0.004[5]. DLA clusters de-
fine a graph where the nodes are the particles and the edges
are the contacts between particles. Since each particle sticks
to a single predecessor, this graph is a tree rooted at the
origin. One of the quantities that we will be interested in is
the structural depthDs of this tree, defined as the length of
the path from the root to the outermost leaf. Numerical simu-
lations [6] support the conjecture that the structural depth
grows linearly in the radius of the cluster,Ds,R. The
growth mechanism of DLA strongly favors adding particles

at the outermost tips of the cluster and thus exerts a tension
that tends to make the growth radial. Figure 1(a) color codes
particles in a cluster according to their distance to the seed
particle along the tree, sometimes referred to as the chemical
distance to the origin. This figure reveals the close relation
between chemical distance and Euclidean distance from the
origin.

In addition to its structural properties DLA has computa-
tional properties that help elucidate its complexity. The
growth rules for DLA and the resulting patterns suggest that
DLA has a great deal ofhistory dependence. The construc-
tion of a DLA cluster requires a long sequence of steps and
some random choices made early in the growth process are
frozen in and have a large impact on the structure of the
aggregate thereafter. Indeed, the stochastic history depen-
dence present in DLA can be considered a marker for com-
plexity. Biological evolution, the ultimate process for gener-
ating complexity, also has the feature that the present state
emerges from a long sequence of stochastic steps and that
accidents occurring in early epochs are frozen in and create
the ground rules for later epochs.

The intuitive notion of history dependence in stochastic
models such as DLA can be formalized in the context of
computational complexity theory. The idea that the length of
a history can be measured in the framework of computation
was introduced by Bennett[7,8] though our treatment differs
by emphasizing parallel rather than sequential computation
and ensembles rather than individuals. We define thecompu-
tational depthDc of statistical physics models such as DLA
as the minimum number of parallel computational steps
needed to generate a typical system state of the model. Both
statistical physics and computational complexity theory are
concerned with scaling properties, for example, in the case of
DLA, we are interested in the leading largeN behavior ofR,
Ds, andDc.

The notion of computational depth requires that we
specify the parallel computer used to simulate the system.
Computational complexity theory[9,10] provides a standard,
idealized model of parallel computation called the parallel
random access machine or PRAM. The PRAM consists of
many simple processors all connected to a single global
memory. All processors run the same program synchro-
nously, though each processor has a distinct label so that the
program can direct different processors to do different calcu-
lations. In a single computational step, each processor carries
out an elementary logical or arithmetic operation and ex-*Electronic address: machta@physics.umass.edu

PHYSICAL REVIEW E 69, 051403(2004)

1539-3755/2004/69(5)/051403(4)/$22.50 ©2004 The American Physical Society69 051403-1



changes information with the global memory. Since we are
considering a stochastic system, random numbers are needed
and we assume a sufficient supply is stored in the global
memory before the simulation begins. The PRAM is a mas-
sively parallel model of computation where the number of
processors and memory cells are allowed to growpolynomi-
ally (i.e., as a power) in the size of the system, in our case the
number of particlesN. Since any processor in the PRAM can
communicate with any memory element in a single time
step, the PRAM is not a realistic, scalable model of parallel
computation and the considerations of this paper are not in-
tended to provide a practical means of simulating DLA. In-
stead, the goal is to elucidate whether assembling a DLA
cluster requires a long sequence of steps. The PRAM is one
of many equivalent models of parallel computation and the
scaling behavior forDc reflects an intrinsic property of DLA
rather than a particular strength or weakness of the PRAM.
With this preamble we can now define computational depth
as the average number of steps needed to construct a system
state on a PRAM using the fastest parallel algorithm.

The primary objective of this paper is to show thatDc
&Ds and to motivate the conjecture that in factDc,Ds [17].
Previous work has placed upper bounds on the computa-
tional depth of various pattern formation processes in statis-
tical physics. For example, it has been shown that the clus-
ters formed by the Bak-Sneppen model[11], internal DLA
[12], invasion percolation, the Eden model, and ballistic
deposition[13] all havepolylog depthDc& logOs1dN, where
N is the number of degrees of freedom of the system. These
results show that these models do not have a strong intrinsic
history dependence since constructing typical states can be
carried out in a small number of parallel steps. These models
generate trees whose structural depth greatly exceeds the
computational depth,Dc!Ds. The situation is more compli-
cated for DLA. It has been shown[14] that random-walk
dynamics for DLA defines aP-complete problem, which
strongly suggests that there is no polylog depth parallel con-
struction for DLA, though it does not rule out a better power-
law than the linear scaling withN of the conventional, one
walk at a time growth rule. The question posed here is what
is the best power-law scaling for a parallel simulation of
DLA. Previous work[15,2] showed thatDc&N 0.74,R1.26.

Here we improve that bound by exhibiting a faster parallel
algorithm than the one described in Ref.[15].

The parallel algorithm for DLA proposed here assembles
the cluster iteratively. On each step, every particle is moved
to a tentative position so that the true cluster is approximated
with increasing fidelity. Before the iterative process is begun,
an ordered list ofN sufficiently long random-walk trajecto-
ries hwistdui =1, . . . ,Nj is generated and stored in memory
[18]. The cluster generated by the parallel algorithm is the
same as the cluster that would result using these random-
walk trajectories and the standard sequential rules for DLA.

In each step of the parallel algorithm, all particles are
moved along their trajectories to tentative sticking points de-
fined by a temporary cluster called thesemisecurecluster. On
the first step, the semisecure cluster consists only of the seed
particle and every other particle sticks at the point where it
first contacts the seed particle. For largeN, the cluster after
the first step will be nearly a disk of radius 3/2 composed of
the seed particle surrounded by other particles attached to the
seed at the point they first touch it. The semisecure cluster
for the second step consists of the seed particle and all par-
ticles whose path to the seed did not cross the sticking point
of any lower-numbered particle. Ford=2, the semisecure
cluster for the second step consists of the seed and no more
than six nonoverlapping particles touching the seed site. On
the second step, every particle is moved independently along
its trajectory until it first contacts this semisecure cluster.

The semisecure cluster on each parallel step is a template
for growth and contains the subset of particle locations on a
given step that are not obviously incorrect. A particle is not
semisecure if it passes through a predecessor particle on the
path to its sticking point. Semisecure particles are not neces-
sarily at their final locations—it is possible that a particle on
a given step may be in the semisecure cluster in one location
but sticks in a different location on a later step. However, a
semisecure particle such that all its predecessor particles are
semisecure is in its final location.

For themth step in the algorithm, we have a semisecure
cluster defined byNsmd particles at locationshsj

smd u j PSsmdj,
whereSsmd is the set of semisecure particle indices at stepm
and sj

smd is the location of semisecure particlej on stepm.
Each particle(semisecure or not) is then moved to a location

FIG. 1. (Color) Color-coded pictures of the same cluster.(a) The chemical distance to the origin;(b) the parallel step on which the
particle first becomes semisecure at the correct position;(c) the deficit. Green(light) represents the lowest values and blue(dark) the highest.

D. TILLBERG AND J. MACHTA PHYSICAL REVIEW E 69, 051403(2004)

051403-2



based on the template provided by this semisecure cluster.
The sticking point of a particle is determined by indepen-
dently moving it along its trajectory until it first contacts a
semisecure particle location with an index lower than its
own. The sticking pointr i

smd of particle i at stepm is the
location along its trajectory at the least timet i

m such that
there is contact with a lower-numbered semisecure particle;
r i

smd=wisti
smdd such that there is aj PSsmd, j , i, and

uwisti
smdd−sj

smdu=1 and for all t,ti
smd and kPSsmd, uwistd

−sk
smd u .1.
After particles are moved to their sticking points, the cur-

rent semisecure cluster is discarded and the locations of the
sticking points are used to determine the next semisecure
cluster. Each particle is categorized as “semisecure” or “not
semisecure.” A particlei is semisecure for stepm+1 if the
path to its sticking point in stepm does not intersect the
sticking point of any predecessor particle on stepm. More
formally, i PSsm+1d and si

sm+1d=r i
smd, if for all j , i and all

t,t i
m, uwistd−r j

smdu.1. A semisecure particle such that all its
predecessors are also semisecure is calledsecure. It is easy to
see that a secure particle is in the correct location in the
cluster and is guaranteed not to change its location on sub-
sequent steps. The parallel algorithm has constructed a cor-
rect DLA cluster of sizeM for the given trajectories as soon
as particleM is secure.

There is one additional rule for constructing the
semisecure cluster. It may happen that the semisecure cluster
defined by the above rules is a multiply connected “forest”
composed of several “trees.” In this case, only the tree rooted
at the seed particle is retained and the remaining particles,
not connected to the seed, are removed from the semisecure
cluster. This rule removes particle indices fromSsm+1d if they
are not connected to the seed. An example of this phenom-
enon is shown in Fig. 2. Suppose the semisecure cluster for
the first panel consists ofa, b, d, ande and thatb has just
become semisecure in the previous step. If the indexc is less
thand then on the step shown in the first paneld intersectsc
and is no longer semisecure for panel 2. The result is thate is
not connected to the seed and is removed from the
semisecure cluster for panel 2, which consists ofa, b, andc.

As discussed in detail in Ref.[15], sufficiently long
random-walk trajectories can be generated, sticking points of
these trajectories to an existing cluster found and interfer-
ences among particles identified in polylog parallel time us-
ing polynomially many processors . Using a parallel algo-
rithm for connected components[16], one can identify the
tree connected to the origin in polylog time. Thus, the setup
stage and each step of the algorithm require polylog time so
that, up to logarithmic factors, the parallel time used by the
algorithm scales as the number of steps.

How well does this algorithm perform? It is easy to see
that at least one new particle becomes secure on each itera-
tion so that the parallel algorithm requires no more thanN
iterations. In fact, the performance is much better than this
weak bound. We have simulated the parallel algorithm on a
sequential computer forN up to 20 000. LetT be the number
of iterations required by the algorithm and letk=Ds/T be the
ratio of the structural depth to the number of iterations. Fig-
ure 3 showsk=Ds/T plotted againstT. The average is over
several thousand clusters for the small sizes and 63 clusters
for N=20 000. Althoughk decreases slightly asT and N
increase, the data strongly suggest thatk approaches an
asymptote near 0.9. Thus, up to logarithmic factors, the com-
putational depth of DLA is no greater than the structural
depth. In terms of a dynamic exponent for the algorithm,
defined byT,Rz, the data suggest thatz=1.

The algorithm of Ref.[15] is similar to the present algo-
rithm except that the template used in stepm+1 is the secure
cluster from stepm rather than the semisecure cluster. The
semisecure cluster is larger than the secure cluster but, unlike
the secure cluster, it contains particles at incorrect positions
which must later be moved. Our numerical results show that
the larger size of the semisecure cluster more than compen-
sates for the errors in the semisecure cluster. The dynamic
exponent of the “secure” algorithm of Ref.[15] is 1.26 com-
pared to 1 for the “semisecure” algorithm described here.

If k is indeed asymptotically near 1, it implies that on
most steps of the parallel algorithm, one new level is added
to the tree defined by the cluster. It is obvious that the algo-
rithm cannot add more than one level to the tree in one
parallel step sokø1. It is instructive to consider the way

FIG. 2. A sequence of two parallel steps that increases the defi-
cit of particlee and all particles that later connect to it. Suppose that
for the step shown in panel 1, all particles butc are semisecure and
that b has just become semisecure ande has been semisecure in its
location for the pastk steps. For the step shown in panel 2,d ande
are not semisecure,d due to interference withc ande because it is
no longer connected to the origin. In step shown in panel 2,e andd
become semisecure in new locations ande’s deficit is increased by
k+2. FIG. 3. The ratiok=Ds/T of the average structural depth of the

cluster divided by the number of parallel computational steps vsT.

STRUCTURAL AND COMPUTATIONAL DEPTH OF… PHYSICAL REVIEW E 69, 051403(2004)

051403-3



that T becomes larger than the structural depth. After each
parallel step, every semisecure particle can be assigned a
deficit. A particle’s deficit is defined as the difference be-
tween the step on which it most recently became semisecure
at its current location and its chemical distance from the
origin. Figure 2 shows how the deficit of a particle can in-
crease by an arbitrary amount. The two panels show two
successive parallel steps. For the step shown in panel 1, sup-
pose all particles exceptc are semisecure and particleb first
becomes semisecure for this step. Trajectories and sticking
points for particlesc, d, ande are shown. The ordering for
the particles is assumed to beb,c,d,e and a,d. Sup-
pose thate had become semisecure at its current locationk
steps before the step shown in panel 1. In panel 1,c inter-
feres withd sod ande are no longer semisecure for the step
shown in panel 2. For the step after panel 2 all particles are
semisecure in locations shown in panel 2. The deficit ofe
after panel 2 is increased byk+2 over what it was before
panel 1 since its chemical distance is decreased by 1 and it
has become semisecure in a new locationk+1 steps later.
When the algorithm is finished and all particles are secure,
deficits along branches of the tree are a nondecreasing func-
tion of chemical distance. The maximum, taken over leaves
of the tree, of the sum of the deficit and chemical distance to
the origin gives the running time of the algorithm in parallel
steps.

Figure 1 shows three images of the same cluster colored
to reveal different properties. This cluster consists of 20 000

particles, it has a structural depth of 439 and requires 479
steps to assemble. In Fig. 1(a) the particles are colored ac-
cording to their structural depth(chemical distance from the
origin). Note that the contours of equal structural depth are
nearly circular. In Fig. 1(b) particles are colored according to
the parallel step on which they first become semisecure at
their final locations. This image reveals that growth gener-
ated by the parallel algorithm conforms more to the shape of
the branches of the cluster. In Fig. 1(c) particles are colored
according to their deficits, Fig. 1(c) shows the difference
between the quantities in Figs. 1(b) and 1(a) and it reveals
that the dominant branches have small deficits but that large
deficits can develop in branches which are less robust and
screened by the dominant branches. The reason for this ten-
dency can be seen in the example of Fig. 2 where a theft
from one branch to another increases the deficit on the
branch that loses the particle.

The algorithm proposed here assembles DLA clusters by
adding nearly one level of structural depth in each parallel
step. Our intuition is that it is not possible to generate DLA
clusters in substantially fewer steps than the structural depth
of the cluster so thatDc,Ds. This conjecture links funda-
mental structural and computational properties of DLA. Like
other lower bounds in computational complexity theory, this
conjecture is likely to be difficult to prove.

This work was supported by NSF Grants DMR-9978233
and DMR-0242402.

[1] T. A. Witten and L. M. Sander, Phys. Rev. Lett.47, 1400
(1981).

[2] F. Barra, B. Davidovitch, and I. Procaccia, Phys. Rev. E65,
046144(2002).

[3] R. C. Ball and E. Somfai, Phys. Rev. E67, 021401(2003).
[4] T. Vicsek, Fractal Growth Phenomena(World Scientific,

Singapore, 1992).
[5] S. Tolman and P. Meakin, Phys. Rev. A40, 428 (1989).
[6] P. Meakin, I. Majid, S. Havlin, and H. E. Stanley, J. Phys. A

17, L975 (1984).
[7] C. H. Bennett, inThe Universal Turing Machine—A Half-

Century Survey, edited by R. Herken(Oxford University Press,
New York, 1988), pp. 227–257.

[8] C. H. Bennett, inComplexity, Entropy and the Physics of In-
formation, edited by W. H. Zurek, SFI Studies in the Sciences
of Complexity Vol. 7 (Addison-Wesley, Reading, MA, 1990),
p. 137.

[9] C. H. Papadimitriou,Computational Complexity(Addison-

Wesley, Reading, MA, 1994).
[10] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo,Limits to Paral-

lel Computation: P-completeness Theory(Oxford University
Press, New York, 1995).

[11] J. Machta and X.-N. Li, Physica A300, 245 (2001).
[12] C. Moore and J. Machta, J. Stat. Phys.99, 661 (2000).
[13] J. Machta and R. Greenlaw, J. Stat. Phys.77, 755 (1994).
[14] J. Machta and R. Greenlaw, J. Stat. Phys.82, 1299(1996).
[15] K. Moriarty, J. Machta, and R. Greenlaw, Phys. Rev. E55,

6211 (1997).
[16] A. Gibbons and W. Rytter,Efficient Parallel Algorithms(Cam-

bridge University Press, Cambridge, England 1988).
[17] The symbols& and , are to be interpreted, respectively, as

asymptotic inequality and equality up to logarithmic factors,
e.g.,N3log2N&N3.

[18] Random walk trajectories may include several restarts from the
birth circle each time the death circle is reached.

D. TILLBERG AND J. MACHTA PHYSICAL REVIEW E 69, 051403(2004)

051403-4


