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Structural and computational depth of diffusion-limited aggregation
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Diffusion-limited aggregatiofiDLA) is studied from the perspective of computational complexity. A parallel
algorithm is exhibited that requires a number of steps that scales as the depth of the tree defined by the cluster.
The existence of this algorithm suggests a connection between a fundamental computational and structural
property of DLA.
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Diffusion-limited aggregatioiDLA), introduced some 20 at the outermost tips of the cluster and thus exerts a tension
years ago by Witten and Sandgl], is a model of pattern that tends to make the growth radial. Figu@)lcolor codes
formation and an example of self-organized criticality. Theparticles in a cluster according to their distance to the seed
dynamical rules for DLA are simple but the patterns pro-particle along the tree, sometimes referred to as the chemical
duced are complex and have thus far defied full theoreticallistance to the origin. This figure reveals the close relation
understanding; though there has been recent progress fbetween chemical distance and Euclidean distance from the
two-dimensional DLA[2,3]. DLA models a number of origin.
physical systems including electrodeposition, fluid flow in  In addition to its structural properties DLA has computa-
porous media, and the growth of bacterial colorjils tional properties that help elucidate its complexity. The

The stochastic growth rules for DLA can be couched ingrowth rules for DLA and the resulting patterns suggest that
terms of random-walk dynamics. In the present work weDLA has a great deal dfiistory dependencelhe construc-
consider two-dimensional diffusion-limited aggregates comlion of a DLA cluster requires a long sequence of steps and
posed of circular particles of unit diameter. The initial con-S0me random choices made early in the growth process are
dition is a single seed particle at the origin,=0. The frozen in and have a large impact on the structure of the
growth of the aggregate occurs one particle at a time an ggregate thergafter. Indeed, the _stochast|c history depen-
proceeds by starting the first particle at a random position o ence present in DLA can be con$|dered a marker for com-
the “birth circle,” r,(0)=r,> 1. This particle does a random plexity. Biological evolution, the ultimate process for gener-

Lo . " . » ating complexity, also has the feature that the present state
walk, w, (1), until it either drifts out to the “death circle, emerges from a long sequence of stochastic steps and that

r1>rq>rp, OF comes in contact with the particle at the ori- 4ocigents occurring in early epochs are frozen in and create
gin, ry=1. If it contacts the particle at the origin, it sticks and the ground rules for later epochs.

the aggregate grows. If it reaches the death circle, itis reborn The intuitive notion of history dependence in stochastic
at a random point on the birth circle and the process is remodels such as DLA can be formalized in the context of
peated until the particle sticks. Aftersteps of this_construc— computational complexity theory. The idea that the length of
tion, the aggregate consists ofconnected particles con- 4 history can be measured in the framework of computation
tained in a circle of radiu®,. On thenth step, a particle is as introduced by Bennefif,8] though our treatment differs
launched on the birth circle,,>R,+1, and follows a ran-  py emphasizing parallel rather than sequential computation
dom walkw,(t) until it sticks on one of the existing particles ang ensembles rather than individuals. We definectmepu-
in the aggregate at sticking position such that there is a tational depthD, of statistical physics models such as DLA
k<nand|r,—r|=1. as the minimum number of parallel computational steps
DLA is believed to form fractal clusters such thBf,  needed to generate a typical system state of the model. Both
~N whereRy is the average radius of a cluster Bf  stagistical physics and computational complexity theory are
particles andd; is the fractal dimension, estimated by nu- concerned with scaling properties, for example, in the case of

merical simulation to be 1.715+0.0Q8]. DLA clusters de-  DLA, we are interested in the leading lartyebehavior ofR,
fine a graph where the nodes are the particles and the edges andD..

are the contacts between particles. Since each particle sticks The notion of computational depth requires that we

to a single predecessor, this graph is a tree rooted at thghecify the parallel computer used to simulate the system.
origin. One of the quantities that we will be interested in isComputational complexity theof,10] provides a standard,
the structural depthD; of this tree, defined as the length of jdealized model of parallel computation called the parallel
the path from the root to the outermost leaf. Numerical simurandom access machine or PRAM. The PRAM consists of
lations [6] support the conjecture that the structural depthmany simple processors all connected to a single global
grows linearly in the radius of the clusteRs~R. The  memory. All processors run the same program synchro-
growth mechanism of DLA strongly favors adding particles nously, though each processor has a distinct label so that the
program can direct different processors to do different calcu-
lations. In a single computational step, each processor carries
*Electronic address: machta@physics.umass.edu out an elementary logical or arithmetic operation and ex-
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FIG. 1. (Color) Color-coded pictures of the same clust@). The chemical distance to the origith) the parallel step on which the
particle first becomes semisecure at the correct posit®nhe deficit. Greerilight) represents the lowest values and hidark) the highest.

changes information with the global memory. Since we areHere we improve that bound by exhibiting a faster parallel
considering a stochastic system, random numbers are needalgorithm than the one described in REE5].
and we assume a sufficient supply is stored in the global The parallel algorithm for DLA proposed here assembles
memory before the simulation begins. The PRAM is a masthe cluster iteratively. On each step, every particle is moved
sively parallel model of computation where the number ofto a tentative position so that the true cluster is approximated
processors and memory cells are allowed to gpmlynomi- with increasing fidelity. Before the iterative process is begun,
ally (i.e., as a powarin the size of the system, in our case the @n ordered list oN sufficiently long random-walk trajecto-
number of particled\. Since any processor in the PRAM can fies {wi(1)[i=1,... N} is generated and stored in memory
communicate with any memory element in a single time[18]. The cluster generated by the parallel algorithm is the
step, the PRAM is not a realistic, scalable model of parallesame as the cluster that would result using these random-
computation and the considerations of this paper are not invalk trajectories and the standard sequential rules for DLA.
tended to provide a practical means of simulating DLA. In- In each step of the parallel algorithm, all particles are
stead, the goal is to elucidate whether assembling a DLANoved along their trajectories to tentative sticking points de-
cluster requires a long sequence of steps. The PRAM is oniéned by a temporary cluster called themisecureluster. On
of many equivalent models of parallel computation and thehe first step, the semisecure cluster consists only of the seed
scaling behavior foD, reflects an intrinsic property of DLA particle and every other particle sticks at the point where it
rather than a particular strength or weakness of the PRAMrst contacts the seed particle. For lafgethe cluster after
With this preamble we can now define computational deptthe first step will be nearly a disk of radius 3/2 composed of
as the average number of steps needed to construct a systéfg seed particle surrounded by other particles attached to the
state on a PRAM using the fastest parallel algorithm. seed at the point they first touch it. The semisecure cluster
The primary objective of this paper is to show tHag for the second step consists of the seed particle and all par-
<D, and to motivate the conjecture that in fagt~ Dg [17]. ticles whose path to the seed did not cross the sticking point
Previous work has placed upper bounds on the computd&f any lower-numbered particle. Fa=2, the semisecure
tional depth of various pattern formation processes in statiscluster for the second step consists of the seed and no more
tical physics. For example, it has been shown that the clughan six nonoverlapping particles touching the seed site. On
ters formed by the Bak-Sneppen modgl], internal DLA  the second step, every particle is moved independently along
[12], invasion percolation, the Eden model, and ballisticits trajectory until it first contacts this semisecure cluster.
deposition[13] all have polylog depthD,=<log® PN, where The semisecure cluster on each parallel step is a template
N is the number of degrees of freedom of the system. Thest®r growth and contains the subset of particle locations on a
results show that these models do not have a strong intrinsi@iven step that are not obviously incorrect. A particle is not
history dependence since constructing typical states can @misecure if it passes through a predecessor particle on the
carried out in a small number of parallel steps. These modelgath to its sticking point. Semisecure particles are not neces-
generate trees whose structural depth greatly exceeds tgarily at their final locations—it is possible that a particle on
computational deptip,<D,. The situation is more compli- @ given step may be in the semisecure cluster in one location
cated for DLA. It has been showfi4] that random-walk but sticks in a different location on a later step. However, a
dynamics for DLA defines a&-complete problem, which Semisecure particle such that all its predecessor particles are
strongly suggests that there is no polylog depth parallel conseémisecure is in its final location.
struction for DLA, though it does not rule out a better power-  For themth step in the algorithm, we have a semisecure
law than the linear scaling withl of the conventional, one cluster defined byN™ particles at Iocation$s§m)|j e Smy,
walk at a time growth rule. The question posed here is whawhereS™ is the set of semisecure particle indices at step
is the best power-law scaling for a parallel simulation ofands™ is the location of semisecure partigleon stepm.
DLA. Previous work[15,2] showed thatD <N %74~ R1-26, Each particlgsemisecure or npts then moved to a location
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FIG. 2. A sequence of two parallel steps that increases the defi- 1

cit of particlee and all particles that later connect to it. Suppose that 0.92
for the step shown in panel 1, all particles lowre semisecure and 0.915
thatb has just become semisecure anldas been semisecure in its ) i
location for the pask steps. For the step shown in panebd2ande 0.91 ‘ . . . ‘ . .
are not semisecure, due to interference witke ande because it is 750 100 150 200 250 300 350 400 450
no longer connected to the origin. In step shown in panelahdd T
become semisecure in new locations @&sddeficit is increased by
k+2. FIG. 3. The ratiok=D4/T of the average structural depth of the

cluster divided by the number of parallel computational step§.vs

based on the template provided by this semisecure cluster. as giscussed in detail in Ref15], sufficiently long

The sticking point of a particle is determined by indepen-random-walk trajectories can be generated, sticking points of
dently moving it along its trajectory until it first contacts a these trajectories to an existing cluster found and interfer-
semisecure particle location with an index lower than itsences among particles identified in polylog parallel time us-
own. The sticking poimri(m) of particlei at stepm is the ing polynomially many processors . Using a parallel algo-
location along its trajectory at the least tim¢" such that rithm for connected componenf46], one can identify the

there is contact with a lower-numbered semisecure particldree connected to the origin in polylog time. Thus, the setup
rfm):Wi(Ti(m)) such that there is ajeS™, j<i, and stage and each step of the algorithm require polylog time so
|Wi(Ti(m))—S§m)|=1 and for all t<ri(m) and ke S™, |w(®) that, up to logarithmic factors, the parallel time used by the

™ algorithm scales as 'ghe number of steps. _

-5 | >1. How well does this algorithm perform? It is easy to see

After particles are moved to their sticking points, the cur-that at least one new particle becomes secure on each itera-
rent semisecure cluster is discarded and the locations of th&yn so that the parallel algorithm requires no more than
sticking points are used to determine the next semisecurgerations. In fact, the performance is much better than this
cluster. Each particle is categorized as “semisecure” or “nojyeak bound. We have simulated the parallel algorithm on a
semisecure.” A particle is semisecure for stem+1 if the  sequential computer fo¥ up to 20 000. Lefl be the number
path to its sticking point in stepn does not intersect the of iterations required by the algorithm and let D¢/ T be the
sticking point of any predecessor particle on stepMore  ratio of the structural depth to the number of iterations. Fig-
formally, i e S™Y and §™V=r{", if for all j<i and all  ure 3 showsc=D,/T plotted against. The average is over
t<r, |wi(t)—r]fm)| >1. Asemisecure particle such that all its several thousand clusters for the small sizes and 63 clusters
predecessors are also semisecure is cabedreltis easyto for N=20 000. Althoughx decreases slightly a§ and N
see that a secure particle is in the correct location in théncrease, the data strongly suggest tkagpproaches an
cluster and is guaranteed not to change its location on sulasymptote near 0.9. Thus, up to logarithmic factors, the com-
sequent steps. The parallel algorithm has constructed a cqputational depth of DLA is no greater than the structural
rect DLA cluster of sizeM for the given trajectories as soon depth. In terms of a dynamic exponent for the algorithm,
as particleM is secure. defined byT~ R?, the data suggest that1.

There is one additional rule for constructing the The algorithm of Ref[15] is similar to the present algo-
semisecure cluster. It may happen that the semisecure clustéthm except that the template used in step1l is the secure
defined by the above rules is a multiply connected “forest’cluster from stepm rather than the semisecure cluster. The
composed of several “trees.” In this case, only the tree rootedemisecure cluster is larger than the secure cluster but, unlike
at the seed particle is retained and the remaining particleshe secure cluster, it contains particles at incorrect positions
not connected to the seed, are removed from the semisecunghich must later be moved. Our numerical results show that
cluster. This rule removes particle indices fr@f*? if they  the larger size of the semisecure cluster more than compen-
are not connected to the seed. An example of this phenonsates for the errors in the semisecure cluster. The dynamic
enon is shown in Fig. 2. Suppose the semisecure cluster faxponent of the “secure” algorithm of R¢l.5] is 1.26 com-
the first panel consists &, b, d, ande and thatb has just pared to 1 for the “semisecure” algorithm described here.
become semisecure in the previous step. If the indisdess If « is indeed asymptotically near 1, it implies that on
thand then on the step shown in the first padehtersectc ~ most steps of the parallel algorithm, one new level is added
and is no longer semisecure for panel 2. The result isdlgt to the tree defined by the cluster. It is obvious that the algo-
not connected to the seed and is removed from theithm cannot add more than one level to the tree in one
semisecure cluster for panel 2, which consista,df, andc.  parallel step sac<1. It is instructive to consider the way
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that T becomes larger than the structural depth. After eaclparticles, it has a structural depth of 439 and requires 479
parallel step, every semisecure particle can be assignedsteps to assemble. In Fig(al the particles are colored ac-
deficit A particle’s deficit is defined as the difference be- cording to their structural depttthemical distance from the
tween the step on which it most recently became semisecuigrigin). Note that the contours of equal structural depth are
at its current location and its chemical distance from thenearly circular. In Fig. (b) particles are colored according to
origin. Figure 2 shows how the deficit of a particle can in-the parallel step on which they first become semisecure at
crease by an arbitrary amount. The two panels show tWeneir final locations. This image reveals that growth gener-
successive parallel steps. For the step shown in panel 1, supreq py the parallel algorithm conforms more to the shape of
pose all particles exceptare semisecure and partidiefirst  {he pranches of the cluster. In Figicl particles are colored
becomes semisecure for this step. Trajectories and St'Ck'”Qccording to their deficits, Fig.(d) shows the difference
points f(_)r par_ticles:, d, ande are shown. The ordering for panveen the quantities in Figs(t} and ¥a) and it reveals
the particles is assumed to becc<d<eanda<d. Sup-  hat the dominant branches have small deficits but that large
pose thate had become semisecure at its current locakion geficits can develop in branches which are less robust and
steps before the step shown in panel 1. In pand iiter-  gcreened by the dominant branches. The reason for this ten-
feres withd sod ande are no longer semisecure for the Stepdency can be seen in the example of Fig. 2 where a theft
shown in panel 2. For the step after panel 2 all particles argom "one branch to another increases the deficit on the
semisecure in_ Io_cations shown in panel 2. .The deficieof ranch that loses the particle.
after panel 2 is increased Wy+2 over what it was before  Thg gigorithm proposed here assembles DLA clusters by
panel 1 since its chemical distance is decreased by 1 and dyging nearly one level of structural depth in each parallel
has become semisecure in a new Iocaﬂrﬂﬂl steps later. step. Our intuition is that it is not possible to generate DLA
When the algorithm is finished and all particles are securey|ysters in substantially fewer steps than the structural depth
deficits along branches of the tree are a nondecreasing fungs ihe cluster so thaD.~ D, This conjecture links funda-
tion of chemical distance. The maximum, taken over leavesnenta| structural and computational properties of DLA. Like
of the tree, of the sum of the deficit and chemical distance tQiher jower bounds in computational complexity theory, this
the origin gives the running time of the algorithm in parallel conjecture is likely to be difficult to prove.
steps.

Figure 1 shows three images of the same cluster colored This work was supported by NSF Grants DMR-9978233
to reveal different properties. This cluster consists of 20 00@&nd DMR-0242402.
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